Jan.6-10, 2003

Tokyo-Adelaide Joint Workshop on Quarks, Astrophysics and Space Physics

Dynamical Parton Energy Loss in Relativistic Heavy Ion Collisions

Tetsufumi Hirano

Physics Department, University of Tokyo

Outline:

- Jet tomography
 - •Jet quenching
 - •Jet acoplanarity
- •Hydro+jet model
- •Results
 - •Suppression factor
 - •Correlation function
- •Summary

Collaborator:

Yasushi Nara (Univ. of Arizona)

Reference:

T.Hirano and Y.Nara,

Phys. Rev. C 66, 041901(R) (2002).

Introduction

Recent important hadronic observables in high $p_{\rm T}$ regions at Relativistic Heavy I on Collider (RHIC)

- 1. Suppression of the yields
- 2. Disappearance of back-to-back correlations

The diagnostic tools for dence matter (Quark Gluon Plasma?)

"jet tomography"

Jet Tomography

Gyulassy, Plummer ('90)

Tool 1. Jet quenching

CT (computed tomography) scan

correlate?

Hot matter produced in a collision

Tool 2. Jet acoplanarity Blaizot (transverse momentum imbalance)

Figures taken from M.Gyulassy's presentation

Bjorken('82)

Appel ('86)

McLerran ('86)

Tool 1. Jet Quenching

In vacuum

In hot (deconfined) matter

Nucleon-nucleon collisions

Energy loss in vacuum (~fragmentation) $-dE/dx \approx \kappa \approx 1 \text{GeV/fm}$ κ : string tension

Nucleus-nucleus collisions

Additional energy loss in matter

$$-\Delta E \sim \alpha_{s} \sqrt{E_{cr}E} \quad \text{for } E < E_{cr}$$
$$\sim \alpha_{s} E_{cr} \quad \text{for } E > E_{cr}$$

where
$$E_{cr} = \mu^2 L^2 / \lambda$$
 Baier *et al.*, (1997)

Tool 1. Jet Quenching (contd.)

 $=\frac{d^2N^{\text{A+A}}/dp_{\text{T}}d\eta}{\left\langle N_{\text{coll}}\right\rangle d^2N^{\text{N+N}}/dp_{\text{T}}d\eta}$ $=\frac{d^2N^{\text{A+A}}/dp_{\text{T}}d\eta}{\left\langle N_{\text{coll}}\right\rangle d^2N^{\text{N+N}}/dp_{\text{T}}d\eta}$ $=\frac{2.5}{4} \frac{1.5}{4} \frac$

From D. d'Enterria, talk at QM2002.

 $\pi^0 p_{\tau} (GeV/c)$

Tool 2. Jet Acoplanarity

Back-to-back correlations of high p_T hadrons

Strength of away-side peaks are the same in no jet quenching case

Tool 2. Jet Acoplanarity (contd.)

From D.Hardtke (STAR), talk at QM2002.

<u>Model</u>

Jet quenching

Jet acoplanarity

Interplay between soft and hard is *important!*

Hydro + Jet model

Soft (hydrodynamics)

- Space-time evolution of matter
- Phase transition between QGP and hadrons
- •Particle spectra in low p_T region

Hard (mini-jets)

- Production of (mini-)jets
- Propagation through fluid elements
- Fragmentation into hadrons

Interaction between fluids and mini-jets through parton energy loss

The Hydro+Jet Model

PYTHIA (K=2)
• PHENIX π0

PHENIX π0

PHENIX π0

10⁻⁴
• PHENIX
10⁻⁸
• PHENIX

PYTHIA (K=2)

UA1 charged [Y]<0.25

10 12 14 p_T (GeV/c)

Parton energy loss:dE/dx (I will discuss later...)

pQCD LO:

$$q+q' \rightarrow q+q', q+\overline{q} \rightarrow q'+\overline{q}'$$

 $q+\overline{q} \rightarrow g+g, q+g \rightarrow q+g$
 $g+g \rightarrow q+\overline{q}, g+g \rightarrow g+g$

k_T: Gaussian

 $< k_T^2 > = 1 \text{GeV}^2/c^2$

$$E \frac{d\sigma_{\text{jet}}^{pp}}{d^{3}p} = K \sum_{ab} \int g(k_{T,a}) k_{T,a} dk_{T,a} g(k_{T,b}) k_{T,b} dk_{T,b}$$
$$\times \int f_{a}(x_{1}, Q^{2}) dx_{1} f_{b}(x_{2}, Q^{2}) dx_{2} E \frac{d\sigma^{ab \to cd}}{d^{3}p}$$

^{*}Initial and final state radiation are included.

Jets and Hydro Evolution in the Transverse Plane

Au+Au 200AGeV, b=8 fm transverse plane@midrapidity

Gradation

- → Themalized parton density Plot (open circles)
- \rightarrow Mini-jets (p_T >2GeV/c)
- •Initial configuration of mini-jets
- → Prop. to # of binary collisions
- •Assuming jets move along straight paths (eikonal approximation)

Parton Energy Loss

M.Gyulassy et al. (2000)

of a jet

Coherent model

$$\Delta E = -\underline{C} \int_{\tau_0}^{\infty} (\tau - \tau_0) \underline{\rho(\tau, x(\tau))} \log \left(\frac{2\underline{E}}{\mu^2 L} \right)$$
Adjustable parameter Parton density

Position of a jet Initial enegy

Parton density

from hydrodynamic simulations

Landau-Pomeranchuk

- -Migdal effect
- ~Destructive interference

Jet of radiation

Parton Energy Loss (contd.)

Incoherent model

$$\frac{dE}{dx} = -\frac{\mathcal{E}}{\lambda} = -\mathcal{E}op(\tau, x(\tau))$$
Mean free path

Adjustable parameter

Total incoherent energy loss

→ The sum of single scattering

Suppression Factor

- Coherent model
- → Almost flat
- •Incoherent model($\varepsilon \sigma$ =0.06)
- \rightarrow Increase with p_{T}
- Experimental data
- → Gradually decrease

The coherent model with C=0.25 quantitatively reproduces the data below $p_T\sim6$ GeV/c

Data from D. d'Enterria, talk at QM2002.

Three Possible Effects on Back-to-back Correlations

1. Effect of Parton Energy Loss

Simultaneous reproduction of R_{AA} and C_2 ?

→ Another mechanism is needed!

Three Possible Effects on Back-to-back Correlations

2. Effect of Intrinsic k_T

Beam direction

Primordial k_T distribution

$$g(k_{\rm T}) \propto \exp(-k_{\rm T}^2/\sigma_{\rm T}^2)$$
$$\langle k_{\rm T}^2 \rangle = \sigma_{\rm T}^2 = 1,2 \text{ or } 4 \text{ GeV}^2/c^2$$
$$\langle k_{\rm T}^2 \rangle \sim 2 \text{ GeV}^2/c^2 \text{ @SPS}$$

Intrinsic k_T is insufficient to the disappearance of back-to-back correlation!

Three Possible Effects on Back-to-back Correlations

3. Effect of Broadening

$$\langle p_{\perp}^2 \rangle = (\alpha_{\rm s} N_{\rm c} / 4)^{-1} |dE/dx|$$

 p_{\perp} : Transverse momentum orthogonal to its direction of motion

R.Baier et al., (1997)

Reduction of the away-side peaks:

~60% from parton energy loss & intrinsic k_{T}

~40% from broadening

<u>Summary</u>

- •The hydro+jet model for analyzing high p_T regions in relativistic heavy ion collisions
 - Suppression factor
 - •Coherent model with C=0.25 quantitatively reproduces the data below p_T ~6 GeV/c
 - •How do we obtain the decreasing R_{AA} ?
 - Back-to-back correlations
 - •All three effects (energy loss, intrinsic k_T , and broadening) are responsible for disappearance of back-to-back correlations.